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Some apparent discrepancies in the definition or calculation of the Coulomb T matrix are investi 
in an approach that uses shielded wave functions. It is found that the screened Coulomb T matrix behaves 
anomalously in the neighborhood of the energy shell and is in fact discontinuous in the limit of zero screen- 
ing. A closed-form expression for the T matrix, which has been derived previously, is shown to be essentially 
correct off the energy shell. /quP-r- 

I. INTRODUCTION The T matrix, which is related to the wave operator by 
N the usual application of h e  impulse approximation T= J'Q(+), is thereby also in error. I to a many-wy scattering problem, it is cornon to Finally, one can show that the integral in (11, which 

has been evaluated for a Coulomb potential V(Y) = Vo/r 

scattering amplitude. For if a convergence factor e-" 
is wed in (l), the result is 

introduce the two-my scattering matrix or matrix 

pressed as an in the matrix is folded 
into the product of the initial- and final-state mo- 

Usually it is necessary to make further approxima- 

(p I k). The bansition probability can then be ex- by Several authors,6 does not lead to the COITect Coulomb 

mentum distributions. vo b 2 -  ( K + z X ) 2 ] ' q  

(p I TI k) = 4 0 ( v ) e ' ' o  limh+o , (2) 
tions, because experimental two-body scattering data 2 f  [ (p- k)'+X2]'+'1 
give information about the T matrix only on the energy 
shell p"=k2. The most common approximation is to where 
ignore off -the-energy-shell effects completely, putting 1 = vz Vo/fi'k , 
(p I TI k) = (k$ I TI k). However, if the two-body scat- c o ( v ) = r r q r ( i + i v )  I , (3) 
tering wave function is known exactly, the T matrix 
can be directly calculated from the formula 

(PITIk)=@p1 V1J.k). (') 

Here, #k is the wave function for scattering by the po- 
tential V ,  and ch, is a final-state plane wave. 

Since the Coulomb wave function is known exactly 
in closed form, it is natural to consider using the im- 
Pulse approximation for atomic scattering problems. 
Such calculations have been made by Pradhan,' for 
instance, in the case of electron capture by protons, and 

tering by atomic hydrogen. 
Recently, however, there has been some doubt that 

the usual formal scattering theory, which leads to (I), 
is valid for a long-range force such as the Coulomb 
force. Mapletona has evahated the Coulomb wave 
operator a(+)=i@+ie-K- V)-I by expanding it in 
Coulomb partial waves, and has shown that the func- 
tion Q(+)chr differs from the usual Coulomb wave func- 
tion by an energy-dependent factor. Previously, Okubu 
and Feldman4 had studied the integral equation satisfied 
by a(+) in momentum space, obtaining a similar result. 

ao=argr(l+iv), 

and the principal values of the powers are to be taken. 
If we now set p=K and take thelimit X + 0, the scatter- 
ing amplitude, which is -wm/A2 times the matrix* 
turns out to be 

jk(+) = fkc(f)[r(l -iq)ciq y (4) 

where fkc(f) is the usual expression6 for the Coulomb 
scattering amplitude: 

(5) 
by Akerib and Borowitz' in the case of electron scat- rl 

2k sin2+8 
jkC(+) = --fiueiTln(aidt@). 

The squared modulus of the bracketed factor in Eq. 
(4) is m/shh(q), similar to the extra factor found by 
Mapleton and by Okubu and Feldman. If the limit 

-+ 0 is taken before setting p =  k, an additional factor 
of 

efrvl2 ( p z k )  (6) 

appears, SO that (2) predicts a discontinuity a t  the 
energy shell as well as an incorrect scattering amplitude. 

,411 of these difficulties seem to stem from the fact 
that the Coulomb potential distorts not only the scat- 
tered wave but also the incident plane wave. Thus, for 
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for which the l=O radial wave function may be written 
in closed form: 

Fo(kr)=A7Co(q)kRz2Fl( l+b,  1 - i p ;  2 ;  z)eikr, (37) 

~=l-e-rlR (38) 

a=KR{[1+(2q/kR)]1'2-l}, p=a+2kR. (39) 

We assume R large enough that lq/kRl<<l; conse- 
quently, a is real. 

The normalization constant N and the phase shift 
are determined as usual by the asymptotic form of 
Fo(kr). This may be obtained by expanding the hyper- 
geometric function about z= 1 ,  with the result that for 
r>>R 

r(b-ip) 
r ( 1  +b)r (1 - ip)  

e-ikr + 
Equation (40) may be written Fo(kr)-sin(Kr+60) if 
we take 

llr = (41) 

The case of interest is R + m ,  so that a-+q and 
p -+m. We may therefore estimate the gamma functions 
by their asymptotic values, obtaining 

the normalization constant and the phase shift then 
take on the familiar values 

N-1, 6 p a o - q  In(2kR). (44) 

It is also interesting to iind the form of F&r) when 
r<<R. Using the relationship 

, F l ( U ,  b ; c ; z ) = 1 F , ( u ; c ; b z ) [ l + O ( l / b ) l  (45) 

between ordinary and confluent hypergeometric func- 
tions, we may write 

Fo(kr) = Foc(kr)[ 1 +O(r/R) + o ( ~ / k R ) ]  , (46) 

a not unexpected result. 
Let us turn now to the evaluation of I@), which in 

this case can be carried out exactly. After the variable 
of integration is changed to z=1-exp(-r/R), I(*) 
becomes 

I@) = 2qkRNCo(q) 

zF1(l+ia, 1-ip; 2 ;  z)dz, (47) 

O F  C O U L O M B  T M A T R I X  

where 
y =  (p -k )R .  (48) 

This integral can be expresseds in terms of a generalized 
hypergeometric function : 

We may simplify Eq. (49) considerably by invoking 
the series definitions of the 3F2 and zF1 functions and by 
using the fact that (l+a),= (u),+l/u. 

r ( i+ iy ) r  (1 -;or+ip+iy) 

r (1 - iol+iy)r ( 1 +ip+ir) 
-11 . (50) = !VCO(q) 

This expression is valid for all p .  When p = k ,  y=O 
and we get 

r (i-i~y+ip) 

r (1  - i0l)r ( i+ ip )  - l l  

= ei60-NCo(q) (51) 

I ( k )  = NCo(q) 

just as in Eq. (29) ; thus, 

( k I T o [ k ) =  (ez i6O-I) /2 ik .  (52) 
When p#K, both p and y are large compared to a. 
Again using the asymptotic form of the gamma function, 
we obtain 

I ( p )  = NCo(q)[ (1 +iy) "(1 - b+ip+iy)-iq- 1 1 
+0[77/(p-K)RI * (53) 

Our final expression for ( p  I TO I k )  is then 

Co (q)ei*o[(p- K -  iA)>i" ( p +  k+iA)iq]  
(plTolk)=- 

2ip p+k--iX p -k+ iA  

where A =  1/R. This agrees perfectly with the result of 
the previous section in the region where both are valid, 
i.e., I p -  K I >>l/R. 

V. DISCUSSION 

The foregoing analysis can of course be extended to 
values of I beyond Z=O, although results in closed form 
are possible only for the cutoff Coulomb potential. It 

9 Tables of Integral Transforms, Bateman iManuscript Project, 
edited by A. Erdelyi (McGraw-Hill1 Book Company, Inc., New 
York, 1954), Vol. 11, p. 399, Eq. (5). 
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is well known1° that the phase shifts so obtained are 
given by 

6 p a r - q  1~(2kR), (55)  

provided that l<<kR. When l>>kR, the phase shifts fall 
rapidly to zero because of the angular momentum 
barrier ; the intermediate region I =: kR is quite hard to 
handle. 

Under the assumption, however, that R is so large as 
to make contributions from I2 kR generally negligible,'O 
comparison of Eqs. (11) and (17) reveals that 

+k(r)ge-iqlo2Lqkc(r) , r<R.  (56) 
The equality does not hold for r> R because +kc(r) has 
logarithmic distortions not possessed by +k(r). 

Let us now assume that (pi TI k) is calculated as in 
the Introduction, but using Eq. (56), rather than just 
+k"(r), as the approximation to $k(r). Quite obviously, 
the result is identical to Eq. (2), except that eiro is 
replaced by eisa : 

If we now expand Eq. (2') in Legendre polynomials 
according to Eq. (14), we find that 

where 

(58) 

x= (p2+k2+X2)/2pk. (59) 
and 

We are primarily concerned with the coefficient AO, 
which is easily obtained : 

Ao= ( i / i~) [  (2- 1 p 9 -  (~+i)-~q]. (60) 
Thus, the 1=0 component of Eq. (2') is given by 

p+k+zX -( >il. (61) 

This agrees with the results of Secs. I11 and N when 
p"#k2 both in magnitude and phase (the limit X -+ 0 is 
understood). If the calculations of Sec. I11 are repeated 
for higher values of I, one again finds agreement with 
Eq. (57) for 4 # k 2 .  We are therefore led to the conclusion 
that the Coulomb T matrix does possess a discontinuity 
a t  the energy shell, and that furthermore the T matrix 
is correctly represented off the energy shell by Eq. (2), 
provided eieo is replaced by ei60. 

Sec. 4. 

p-k+zh 

lo For a discussion, see G. Breit, Rev. Mod. Phys. 34,766 (1963), 

It is not difficult to see why Eq. (1) gives incorrect 
results on the energy shell when the approximation (56) 
is used. In the first place the Coulomb potential is a 
long-range potential, even though a convergence factor 
is used. Hence, we may expect to get contributions from 
the asymptotic region of $k(r), where the approximation 
is not valid. However, because the rapidly oscillating 
factors, e-)(p*k)r, appear after the angular integration, 
contributions from the asymptotic region are negligible 
unless I p -  k 1 - 1/R. This is precisely the condition 
found in Secs. I11 and IV. 

In summary, then, we have seen that the discontinuity 
in the T matrix found by Okubu and Feldman and by 
Mapleton is quite real," and that off the energy shell 
Eq. (2) is essentially correct. Thus, Eq. (l), which is a 
valid definition of the T matrix for finite range forces, 
may also be used for the Coulomb force provided that 
shielding effects are taken into account when 4 = k 2 .  
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APPENDIX: COULOMB SCATTERING AMPLITUDE 

We have deliberately ignored the problem of evaluat- 
ing (p I TI k) on the energy shell, or the equivalent prob- 
lem of finding the screened Coulomb scattering ampli- 
tude in the limit of zero screening. The customary way 
of doing this is to look at  the coefficient of eikr/r in 
the asymptotic expansion of Eq. (56). We have seen, 
however, that Eq. (56) is valid only when r < R ;  it can- 
not be used when r is much larger than the range of the 
force. On the other hand, the experimental situation, 
in which measurements are made by a detector located 
well outside the range of the force, clearly corresponds to 
r>M. 

One may argue that, as long as kr>>q, it does not 
matter much whether r<R or r > R ;  the asymptotic 
form changes very little. This is probably true, but it 
would be nice to have a direct veriiication such as we 
have presented here for the T matrix off the energy 
shell. This involves performing the sum 

p 6 t -  1 
C1(21+1)- Pdcose) y (-41) 

6,=aZ--7] ln2kR. G42) 

2zk 

where, for kR<<I, 

[Incidentally, we note that az-q ln(Z+l) for large I, 
so that the phase shifts 6z approach zero as I approaches 
kR.] 

At first we thought that Eq. (2) might have precisely 

It should be pointed out, however, that the T matrix obtained 
by these authors does not have the correct magnitude when pZ#k*, 
although the discontinuity is correctly given. 
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the correct angular dependence on the energy shell, in 
spite of the fact that its magnitude is clearly wrong. 
However, upon evaluating A I  for p2=k2, we findI2 

AI= (l/iq) (X2/2k2)-iq[zF1(-Z, Z+1; 1 - i ~ ;  -X2/4k2) 
- (1 +4kZ/XZ)-ine2 i ( m  l-co) 

XzFI(-Z, Z+1; l+iq; -Xz/4k2)] 
= - (l/is) (X2/2k2)-i~[e2i(6~-u0)- 1]+0(7/k2R2) 

+O(Z/k2R2) , (A31 

where as before R =  1/X.  Thus, the expansion of Eq. (2) 
on the energy shell (with ei60 replacing eiuo) may be 
written 

fk(f) = I'(i+id (2L-k 1) Pi(coSe)+a , (A41 

where L is very large but satisfies L<<kR, 61 is given by 
Eq. (A2), terms of order q/kR have been ignored, and 

represents the rest of the series. I t  is evident that even 
apart from the factor I'(l+iq), the series in Eq. (A4) is 
different from that in (Al). 

We could argue, as do Landau and Lifshitz,* that 
the quantity 

L $ ( 6 ~ - 0 0 )  - 1 

1 4  2ik 

L 
c (~Z+~)P~(COSO)  
1 3 0  

l2 See Ref. 3 for one method of performing the integral. 

O F  C O U L O M B  T M A T R I X  

approaches 26(1-cosO) as L + w  and so is only im- 
portant when Os E-~/L.  In  that case, Eqs. (Al) and 
(A4) differ only by a factor of r(l+iq) exp(-2iao) 
=I'(l-iq) except a t  very small angles, provided that 
6t is negligible when O> e. [The factor I'(l-iq) has 
been noted previously; cf. Eq. (4).] 

The above argument is not very satisfying, but since 
we have been unable to sum Eq. (Al), it will have to 
do. The prescription for obtaining the T matrix on the 
energy shell from Eq. (2) is then (1) replace eiuO by 
eisO, (2) divide by I'(l-iq). This causes Eq. (4) to 
become 

fk(;) = fkc(;)e-2iq In2kR (A51 

the extra factor of exp(-iqln2kr) coming from step 
(1). Note that this expression for fk(t) may also be ob- 
tained from the asymptotic form of Eq. (56) if r=R. 
Assuming the correctness of Eq. (AS), we may then list 
the behavior of limR, I (p[ TI k) I near the energy shell 
as follows: 


